ASME

Journal of Computing and Information Science in Engineering

2023 Reviewer’s Recognition

Share This Post

J. Comput. Inf. Sci. Eng. Apr 2024, 24(4): 040201

https://doi.org/10.1115/1.4064714

The Editor and Editorial Board of the Journal of Computing and Information Science in Engineering would like to thank all of the reviewers for volunteering their expertise and time reviewing manuscripts in 2023. Serving as reviewers for the journal is a critical service necessary to maintain the quality of our publication and to provide the authors with a valuable peer review of their work. Below is a complete list of reviewers for 2023. We would also like to acknowledge three outstanding Reviewers of the Year.

2023 Reviewers of the Year

Nicole A. Apetre — U.S. Naval Research Laboratory, USA

Shaurya Shriyam — Indian Institute of Technology Delhi, India

Wenhao Yang — Rochester Institute of Technology, USA

The Reviewer of the Year Award is given to reviewers who have made an outstanding contribution to the journal in terms of the quantity, quality, and turnaround time of reviews completed during the past 12 months. The prize includes a Wall Plaque, 50 free downloads from the ASME Digital Collection, and a one-year free subscription to the journal.

List of JCISE Reviewers

D. Allaire

J. Allen

R. Altschaffel

G. Ameta

A. Ammar

Q. An

N. Apetre

M. Austin

S. Baek

S. Balakrishna

D. Baroroh

S. Basir

S. Behdad

A. Behjat

B. Benaissa

W. Bernstein

Y. Bi

A. Birnbaum

A. Biswas

B. Bose

C. Bronkhorst

R. Burla

A. Butler

J. Butterfield

J. Cagan

M. Campbell

M. Carulli

S. Chandrasegaran

Q. Chao

A. Chatterjee

A. Chaudhari

G. Chen

H. Chen

J. Chen

L. Chen

X. Chen

Z. Chen

R. Chintala

D. Chowdhury

C. Chu

E. Cueto

X. Cui

S. Dong

N. Dozio

D. Allaire

J. Allen

R. Altschaffel

G. Ameta

A. Ammar

Q. An

N. Apetre

M. Austin

S. Baek

S. Balakrishna

D. Baroroh

S. Basir

S. Behdad

A. Behjat

B. Benaissa

W. Bernstein

Y. Bi

A. Birnbaum

A. Biswas

B. Bose

C. Bronkhorst

R. Burla

A. Butler

J. Butterfield

J. Cagan

M. Campbell

M. Carulli

S. Chandrasegaran

Q. Chao

A. Chatterjee

A. Chaudhari

G. Chen

H. Chen

J. Chen

L. Chen

X. Chen

Z. Chen

R. Chintala

D. Chowdhury

C. Chu

E. Cueto

X. Cui

S. Dong

N. Dozio

B. Duan

P. Egan

S. Feng

K. Fu

K. Fukami

M. Fürth

A. Garg

D. Gibbons

S. Goetz

N. Govindan

B. Graber

J. Guilleminot

S. Gundupalli

A. Gupta

M. Hossain

S. Hosseini

P. Hu

Y. Hu

Z. Hu

 

Copyright © 2024 by ASME

 

 

 

A. Iliopoulos

F. Imani

S. Jang

J. Jiao

A. Joneja

A. Jones

P. Kakanuru

P. Kankar

S. Khatir

J. Kim

H. Ko

A. Krishnamurthy

V. Krishnamurthy

M. Kullappan

A. Kumar

N. Kumar

Y. Ledoux

X. Lee

D. Li

J. Li

T. Li

W. Li

Y. Li

Y. Liang

S. Lim

T. Lim

C. Liu

J. Liu

Q. Liu

X. Liu

Z. Liu

F. Lu

Y. Lu

C. Ma

L. Malashkhia

H. Mao

C. Mccomb

J. Meng

F. Milaat

R. Mohanty

M. Mousavi

C. Moya Calderon

D. Mun

V. Narang

P. Nguyen

K. Nguyen Duy

C. Nirala

Y. Pan

J. Panchal

C. Paulsen

U. Persad

B. Pidaparthi

G. Purdy

R. Raffaeli

M. Rahman

G. Rajchakit

P. Ramanan

R. Ranade

B. Ren

S. Rodriguez

J. Rodríguez Arce

S. Rudraraju

V. Sangwan

V. Saseendran

M. Shafae

J. Shin

S. Shriyam

L. Siddharth

B. Song

J. Summers

H. Sun

A. Sundar

K. Suresh

M. Takalloozadeh

T. Thanh Ngoc

Z. Tian

A. Tiwari

A. Tran

A. Trivedi

N. Tsoutos

C. Vallabh

A. Vitali

X. Wang

Y. Wang

Z. Wang

B. Watson

R. Wendrich

M. Wu

Z. Xi

J. Xie

T. Xie

W. Xing

D. Xue

S. Yan

W. Yan

J. Yang

W. Yang

Z. Ye

B. Zhang

G. Zhang

S. Zhang

X. Zhang

Y. Zhang

X. Zhao

Q. Zhou

X. Zhu

GO TO ASME DIGITAL COLLECTION

Visit the ASME Digital Collection archives for JCISE

More To Explore

Announcements

Special Issue on Geometric Data Processing and Analysis for Advanced Manufacturing

Geometric information, such as three-dimensional (3D) shapes and network topologies, has been increasingly explored in manufacturing research. For example, characterizing geometric information in 3D-printed parts, in-situ or ex-situ, opens opportunities for defect detection, quality improvement, and product customization. However, geometric data mining remains critically challenging. Geometric information is embedded in complex data structures, such as 3D point clouds, graphs, meshes, voxels, high-dimensional images, and tensors, which possess challenges for analysis due to their high-dimensionality, high-volume, unstructured, multimodality characteristics. Additional challenges stem from compromised data quality (e.g., noisy and incomplete data), the need for registration, etc.

JCISE VIDEOS