Journal of Computing and Information Science in Engineering

Evidence-Theory-Based Kinematic Uncertainty Analysis of a Dual Crane System With Epistemic Uncertainty

Share This Post


An evidence-theory-based interval perturbation method (ETIPM) and an evidence-theory-based subinterval perturbation method (ETSPM) are presented for the kinematic uncertainty analysis of a dual cranes system (DCS) with epistemic uncertainty. A multiple evidence variable (MEV) model that consists of evidence variables with focal elements (FEs) and basic probability assignments (BPAs) is constructed. Based on the evidence theory, an evidence-based kinematic equilibrium equation with the MEV model is equivalently transformed to several interval equations. In the ETIPM, the bounds of the luffing angular vector (LAV) with respect to every joint FE are calculated by integrating the first-order Taylor series expansion and interval algorithm. The bounds of the expectation and variance of the LAV and corresponding BPAs are calculated by using the evidence-based uncertainty quantification (UQ) method. In the ETSPM, the subinterval perturbation method (SIPM) is introduced to decompose original FE into several small subintervals. By comparing results yielded by the ETIPM and ETSPM with those by the evidence theory-based Monte Carlo method (ETMCM), numerical examples show that the accuracy and computational time of the ETSPM are higher than those of the ETIPM, and the accuracy of the ETIPM and ETSPM can be significantly improved with the increase of the number of FEs and subintervals.

Read More


Visit the ASME Digital Collection archives for JCISE

More To Explore


Special Issue on Geometric Data Processing and Analysis for Advanced Manufacturing

Geometric information, such as three-dimensional (3D) shapes and network topologies, has been increasingly explored in manufacturing research. For example, characterizing geometric information in 3D-printed parts, in-situ or ex-situ, opens opportunities for defect detection, quality improvement, and product customization. However, geometric data mining remains critically challenging. Geometric information is embedded in complex data structures, such as 3D point clouds, graphs, meshes, voxels, high-dimensional images, and tensors, which possess challenges for analysis due to their high-dimensionality, high-volume, unstructured, multimodality characteristics. Additional challenges stem from compromised data quality (e.g., noisy and incomplete data), the need for registration, etc.


2023 Reviewer’s Recognition

The Editor and Editorial Board of the Journal of Computing and Information Science in Engineering would like to thank all of the reviewers for volunteering their expertise and time reviewing manuscripts in 2023. Serving as reviewers for the journal is a critical service necessary to maintain the quality of our publication and to provide the authors with a valuable peer review of their work.