Journal of Computing and Information Science in Engineering

SSVEP-Based Brain-Computer Interface for Part-Picking Robotic Co-Worker

Share This Post


One of the expectations for the next generation of industrial robots is to work collaboratively with humans as robotic co-workers. Robotic co-workers must be able to communicate with human collaborators intelligently and seamlessly. However, industrial robots in prevalence are not good at understanding human intentions and decisions. We demonstrate a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) which can directly deliver human cognition to robots through a headset. The BCI is applied to a part-picking robot. The BCI sends decisions to the robot while operators visually inspecting the quality of parts. The BCI is verified through a human subject study. In the study, a camera by the side of the conveyor takes photos of each industrial part and presents it to the operator automatically. When the operator looks at the photo, the electroencephalography (EEG) is collected through the BCI. The inspection decision is extracted through SSVEPs in EEG. When a defective part is identified by the operator, the signal is communicated to the robot, which locates the defective part by a second camera and removes it from the conveyor. The robot can grasp various part with our random grasp planning algorithm (2FRG). We have developed a CNN-CCA model for SSVEP extraction. The model is trained on a dataset collected in our offline experiment. Our approach outperforms the existing CCA, CCA-SVM, and PSD-SVM models. The CNN-CCA model is further validated in an online experiment and achieved 93% accuracy in identifying and removing defective parts.


Visit the ASME Digital Collection archives for JCISE

More To Explore


Special Issue on Geometric Data Processing and Analysis for Advanced Manufacturing

Geometric information, such as three-dimensional (3D) shapes and network topologies, has been increasingly explored in manufacturing research. For example, characterizing geometric information in 3D-printed parts, in-situ or ex-situ, opens opportunities for defect detection, quality improvement, and product customization. However, geometric data mining remains critically challenging. Geometric information is embedded in complex data structures, such as 3D point clouds, graphs, meshes, voxels, high-dimensional images, and tensors, which possess challenges for analysis due to their high-dimensionality, high-volume, unstructured, multimodality characteristics. Additional challenges stem from compromised data quality (e.g., noisy and incomplete data), the need for registration, etc.


2023 Reviewer’s Recognition

The Editor and Editorial Board of the Journal of Computing and Information Science in Engineering would like to thank all of the reviewers for volunteering their expertise and time reviewing manuscripts in 2023. Serving as reviewers for the journal is a critical service necessary to maintain the quality of our publication and to provide the authors with a valuable peer review of their work.